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The structures of the di- and tri-valent metals Be to
Hg and Al to Tl are considered from a fundamental point of

view, based on the pseudopotential and second order pertur-

bation theory. The most significant factors for the struc-
ture of a simple metal are the valence 3?’ and the position
9, of the first zero of the pseudopotential. The 96 in
"turn can be related to atomic properties such as the radius
of the ion core and the sp promotion energy. When dg falls
near a set of reciprocal lattice vectors, distortions from
a simple structure are likely to occur. The variation of
q, through the periodic table gives a qﬁalitative explana-
tion of the variation of c/a ratio from Be to Cd, the

occurrence of distorted structures in Hg, Ga and In, the
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behavior of the InPb and InSn solid solution alloys, as
well as features of the molten metals and some other
elements. A few detailled calculations show the gqualita-
tive arguments are soundly based, but the pseudopotentials
have to be very precisely known, which they are not at
present, before good agreement with experiment can be

expected.




I. THE STRUCTURAL ENERGY

We are interested in understanding the structures of
metals from a fundamental point of view. Basically the co-
hesive energy of a metal depends on the electronic structure
of the conduction band, which we describe in terms of pseudo-

potentilals in the way now customary.l’2

Previous attempts to
predict the observed structures of metals from first principles
using such a theory have met with mixed success.2 Recognizing
the uncertainty of our present knowledge of atomic pseudo-

potentials v(q), particularly at large wave number-

g, and of

the precise dependence of the exchange and correlation energies
on struéture, we shall here content ourselves with the qualita-
tive explanation of well-defined trends in the structures of
metals in terms of trends in the corresponding pseudopotentials.”
The metals considered are those with valency ¥y =2 (Be, Mg,

Zn, Cd, Hg) and Yy =3 (A1, Ga, In, Tl), and some alloys of
them. We omit Ca, Sr, Ba and Sc, Y, La because the proximity

of d-states has a strong effect, as may be seen for example

from the A2 parameter and the peculiar v(gq) for Ca, etc.3 At
the end (Sec. IT ) we include a few brief comments on some other clements,

Since the pseudopotential 1is small, the total energy is
expanded in a perturbation series. To first order, the conduc-
tion band is a free-electron gas with the bottom of the band

given by the mean pseudopotential, and the total energy a




- function of volume only, U
| 4-6

order energy is

17 5ay- The structure dependent second

U, = U+, WO [v@] F9) ()

Here W(g) is the structural weight of a set of reciprocal lat-

tice vectorsig,

(9) = Za \f;(gj\1 | (2)

where S 1is the structure factor, and the sum is over all equiva-

lent reciprocal lattice vectors g.
P~

F contains two factors:

F(9) =L (9)f0), ' )

with f(q) the usual function from perturbation theory

, o
fay = L T(\,«.»-m*\
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 depicted in Fig. 1, where T(k) = #°k°/em and kg 1s the radius
of the Fermi sphere. In (3) ,&(g) is a slowly varying
function of order unity which 1includes among other things
the exchange and correlation energy: We shall for the most
part ignore it. We discuss o and Eq. (1) further in the

appendix. The guantity

E() = [v@ 1o (4) (@) o

in (1) is the energy characteristic of Harr*isonz’)1L and we shall

cast most of our discussion in terms of it. Finally U_ in (1)

E
is an Ewald term,7 the difference between the electrostatic
potential energy of the real lattice and the potential energy
-0.-9 %gee/Ra when the atomic polyhedron is replaced by a

sphere of radius Ra'
We have omitted in [(1):

(a) Higher order perturbation terms. These are of small
order since ty‘pically3 V(g)/EF ~ 0.1, though they can
8

lead to some observable effects.

(b) Core-core interactions. These should be small since
among the metals considered the ion cores are small,

tightly bound, and not overlapping.

(¢) The effect of the non-locality of the pseudopotential.

In most metals the parameters AO and Al of the model
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potential3 do not differ greatly so that v is nearly |
local. Also in (1), (%) most of the contribution
comes from scattering between states near the Fermi
level because of the energy denominator, so that the
relevant scattering matrix element <k | v | k + @

is nearly constant, which is all that is really

assumed, even though v is not loecal.

(d) The exclusion of the valence states from the core.
This is the ‘'orthogonality correction'3 and leads
to a small change'’> in the effective y .

Finally we make one further approximation of a somewhat
different nature: We include in (1) only the first few recip-
rocal lattice vectors g < 2kp. On the one hand f(q) decreases
to zero as q —» oo , and on the other there are ground39 for
hoping that v(q) may be taken to cut off fairly quickly at

large q.

All of this would bé of little use were it not for the
fact that the psewdopotentlals v(g) of most elements are |

3

astonishingly similar,” passing through zero at some point

q, usually less than 2k (Fig. 2). The shape of E(q) —
deﬁicted in Fig. 3 1s indeed typilcal, and 1ts qualitative
variation from element to element 1s contained in the two
parameters q, and 2kF. The appropriate scale on which

to measure these quantities 1s one in which the




reciprocal lattice vectors g, at which E(q) is to be evaluated,
are fixed. We use as unit 21T/AO where A 1is the lattice con-
stant of a face-centered cubic (f ¢ ¢ ) structure with the same
atomic volume. 2kF is then a function only of valence 1? .

The variation of 9 will be considered in the next section.

How do we expect the structure to depend on these param-
eters? Firstly 1t is clear that a set of reciprocal lattice
vectors of magnitude g Jv a5 will contribute little to the
binding energy. In choosing between two simple structures,
e.g., body-centered cubic (b ¢ ¢ ) and hexagonal close packed
(hcp ), the effect of 9, 1s to favor the structure which has
a distribution of structural welight avoiding it. Bigger band
gaps simply give bigger binding energy. Furthermore, a
structure having a set of reciprocal lattice vectors falling
near g, may lower 1ts total energy by splitting them into two
or more sets by an appropriate distortion of the lattice.

This effect, which 1s due to the convexity of E(q) near 9
(Fig. 3), has a converse in any region where there 1s a strong
concave (1i.e., upward) curvature of E(g), as 1s the case for g

Just less than 2kF in many metals.

We should note, however, that the.effect of the Ewald
term Up in (1) is to favor a structure of high symmetry such
as fcec, becc and h ¢ p, The Ewald energy of these 1s
small, quite negligible in fact,7 but it appears to increase

rapidly with any distortion of them.
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The lowering of the energy U2 by the repulsion of a recip-
rocal lattice vector g away from q, applies whether the change
in g is due to a change of volume or of structure. However,.
an electron gas 1s rather incompressible because of the Ferml
energy, and U2 being second order in v is small. The volume
changes induced by g, are consequently very small, and we shall
in what fcllows, consider only the change in U2 with structure

at constant volume.

The behavior of f(q) in tke region of the singularity at
2kF results in a sharp increase in the gradient of E(q) there.
In the simple second order theory, the gradlent 1in fact
becomes infinite. Other things beilng equal, i.e., v(g) con-
stant, it pays to Lhave a reciprocal lattice vector below 2kF
rather than above. This 1s the well-known effect discussed

10

by Mott and Jones in terms of the formation of Jones zones

near the Ferml sphere.

In the case of distorted structures, this effect can
determine the magnitude of the distortion. Suppose a set
of reciprocal lattice vectors g increases with distortion.
When g = 2k, the infinite gradient makes i1t energetically
unfavorable for the distortion to increase. In practice, of
course, the singularity 1is somewhat smoothed out. Also v(q)
may be increasing sufficlently rapidly that E(q) 1is still
decreasing beyond g = EkF. Nevertheless a fairly sharp in-
crease (in the algebralc sense) of dE/dgq near 2kp will remain,

and can suffice to 1limit the distortion.




II. VARIATION OF d,

Since we ultimately wish to understand the structures of
solids In terms of the basic properties of atoms, it is impor-
tant to relate the variation of q, among the elements to

atomic features.

The cancellation theoremll’le’13

suggests as an approxi-
mate picture (in real space) of the pseudopotential of a bare

ion

\J;S = §7 P vu<‘x2C ) (6)

where all the real potential is cancelled off to V inside the
core radius Rc. V is the mean screened pseudopotential in
the metal, approximately proportional tokb . Thus, Vps/%
is a function of r/Rc only, and q0 proportional to l/Rc. The
screening by the electron gas only affects the magnitude of

v(q) through the screening factor € (g) without altering CH

It is easy to verify this simple model gives qoin approximately

the observed place: ignoring V in (6) gives v(q)ee q'2

with quc = %w which is somewhat too far out, and the effect
of V 1s to bring 9 in a bit. Anyway 9 is proportional %o
Ra/Rc in units of 2F/AO, where R 1is the atomic radius.

cos(ch)




10.

Empirically Ra/Rc increases with 2{ , as can be understood
in terms of pseudopotentials.14 Thus, d, increases with 3, s
as can be seen in Fig. 4 by comparing pairs of elements from

the same row of the periodic table or the means of the two

groups } = 2 and } = 3.

Within a group of constant 3% , there 1s some decrease

14 which would tend

in Ra/Rc with increasing atomic number Z
to decrease 9 However, this effect 1is outweighed by another.
The energy difference Asp between the s and p states 1in the
atom increases (relative to the energy levels themselves) with
increasing Z. It is the well-known fact that the s shell in
Hg, T1 , Pb is relatively rather tightly bound, and can also
be9%£§%¥ibed in terms of pseudopotentials14 but not within
the simple model (6). A large Asp tends to make v(g) more
negative, i.e., to give the s-like state below the p-like one
at a band gap at constant g.15 Thus,,qo increases with atomic

number Z in each group of constant valence 35 , as can also be

seen in Fig. 4.
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ITII. THE DIVALENT METALS

Fig. 4 shows the structural weights W(g) of the f ¢ c,
bece and h ¢ p. (ideal c/a)structures, relative to g and
2kF for the divalent metals. The q, are values calculated
from the Model Potential,3 which glves good agreement with

3,

16

experiment, for v(q) in the region of q,- It 1s imme-
diately clear that the f ¢ ¢ structure is unfavorable beca@se
its structural wéight is split between two g's in a region
where E(g) is concave. For Zn, Cd, h.c.p 1s favored over

b ¢ ¢ since the main structural weight lies further from dg-
The balance 1s more even for Be and Mg where 9, is considerably
smaller: We shall merely accept that h ¢ p 1is the stable form

and turn to the deviation of the c¢/a ratio from the ideal.

Hg will be treated as a speclal case in Section IV.

For the h ¢ p structure, the Ewald energy 1is a minimum
for the ideal (c¢lose packing) c/a ratio, but there is no group-
theoretical argument (as there is for cubic symmetry) that the
bard structure energy shall be stationary at this c/a ratio.
Thus there is a linear term in the relation of band structure
eﬁergy to distortion from ideal c/a, and c/a will deviate some-

what from ideal in all cases.

The magnitudes of the reciprocal lattice vectors vary

with distortion as follows:
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g, = &(110,0) =1.633 (1 +¥ ) (5)
g, = 8(000,2) =1.732 (1 - 2Y ) (6)
g5 = g(110,1) = 1,848 (1 + 0.34 y) (7)

1/3
where 1 + )’ = [E7§Z%E€5T] . (8)

Each g tends to produce a change in c¢/a which would move it to
lower E(g). For example in Zn and Cd, g3 which has the largest
structural welght lies in the region Just to the right of 9
where E'(q) = 4E/dq 1s negative. Since g5 increases with c/a,
it tends to give c/a greater than ideal. Using the structural
welghts of Fig. 4, we may write down the combined effect of gy
32, 33' The term in the band structure which is linear in the
distortion 1is

[2.45E'(1.633) - 6.93E (1.732) + 5.67E (1.848)]  (9)

If the coefficibnt in square brackets 1s negative, it lowers
the energy to have b’ positive, i.e., c¢/a greater than ideal;

and vice vers&. If we replace the first two reciprocal lattice
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- vectors, which are close together, by their mean, (9) simpli-
files to

[-4.48E' (1.688) + 5.67E (1.848)]
(10)

This gquantity may be thought of as roughly proportional to the
second derivative of E(q) atciﬁg 1.75; it 1s then clear that
it willl decrease steadily from Be for which it will be small,
the % being at 1.39,to Cd in which it will be large and nega-
tive since the zero 1s at 1.70 so the reciprocal lattice
vectors fall in the region of large convex curvature. This
predicts a c¢/a ratio whicﬁ 1ncreaseé with g from a value
close to ideal, in agreement with the observed ratios Be(1.59),
Mg(1.62), Zn(1.86), cd(1.89).

For a glven element, g, can be decreased relative to
the reciprocal lattice vectors by increase of pressure, and
an overall increase of c/a with qo is observed,17 though it

is not monotonic.

The replacement of 8, and 85 by their mean neglects the
effect of their motion relative to the mean. g, and g, cross
over at c¢/a = 1.73. The effect of the convex curvature of
E(q), which pushes them apart 1s thus to reduce c¢/a when it is
less than 1.73 and increase it when greater: Since the curva-
ture in this region is much greater in Zn and Cd than in Be
and Mg, this 1s probably a significant contribution to the

very large deviation of c¢/a from ideal for the former.
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In the MgCd alloys‘sand in C4 under pressure, the variation
of ¢/a with composition and pressure is most rapid at c/a = 1.73,
which presumably is again related to the crossing of 8 and.gz.
A simple theory glves just a uniform expansion of the c/a scale
about 1.73, proportional to E? (q) at qa 1.7, and we conclude

the effect is more complicated.
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IV. MERCURY

In Hg the main structural weight of all three structures
falls close to q,s SO that there will be 1ittle binding in
any structure. The same applies to the 1liquid where the main
peak in a{g), the expectation value of !S(q)le, also falls
nearly on dg° The difference in energy AU between liquid and
solid will also be small, resulting in a low melting tempera-
ture

AT
/

T = 2%/AS (11)

m

where AS 1s fixed by the geometrical entropy of disorder.19

Returning to the solid structures, we see from Fig. 4
that b ¢ ¢ 1s clearly unfavorable, since W(g) falls practi-
cally on - The f ¢ ¢ structure appears favored over the
h ¢ p structure since it has some structural weight at g =
2.0, well away from qp- The concentration of structural
welght near a, in all three structures accounts for the
preference of Hg for more complex structures whose structural
welght avoids it. Two structures are found, both of whicﬁ are
describable as distortions of f ¢ ¢, and indeed are the two
types of shearing distortion of f ¢ ¢ which we would expect
on grounds of symmetry. They are the rhombohedral distortion 29
(- Hg), which stretches or compresses the cublc cell along
a body diagonal, splitting the {111} set of reciprocal lattice
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- vectors, and the tetragoral distort-iona'(ﬁ - Zg) which stretches
or compresses it along a cube axis, splitting the.{eooj}set of
reclprocal lattice vector$. Tre FEwald term opposes both distor-

tions, but not equally. The rhombohedral shear is opposed much

Ewald
more strongly as can be seen from theAcontribution C(E) to the
corresponding elastic constantsad:
Cyy (E)
44 ~ 8.95. (12)
Lio (E)-c (E)]
2" 711v ¢ty iz

This 1s presumably wrny btoth strictures are found, despite
the fact that the rhomto'edral distortion, since it splits the
set of reciprocal lattice vectors close to d,» appears much
more favorable from tre poirt of view of lowering the band
structure energy. Indeed, since the tetragonal distortion
splits the {Eooj}set wr.ich does not lle in a region of convex
curvature of E(q), and srifts the {111} gset, which liles close
to qo where the derivative of E(gq) 1s small, the f ¢ ¢ 8truc-
ture may well be stable against a small tetragonal distortion.
This does not, however, imply that the very large observed
distortion (c/a = %) i1s unfavorable. Note in particular, that
the contribution of the-{lll} reciprocal lattice vectors to
the cohesive energy will increase roughly as the fourth power

of distortion because they are near q5°



Both types of distortion have magnitudes which are in
keeping with the discusslon in Sec I, i.e., 1imited by
a set of reclprocal lattice vectors reaching 2kF from below.

Two of the {111} vectors in o -Hg are at 1.03 (2k while

F),
in ‘B -Hg the whole set {111} 1s at 1.02 (2kg).

The main point which we wish to emphaslze here is that
these distortions stem from v(g) being small, i.e., g being
near q,. How far may tr.ey be viewed as some tendency to form
covalent bornds of particular lengths and angles? Certalnly
not in the sense of the diamond type semiconductors, where
the covalency 1s a manifestation of v(g) being large.9
However, the form of v{ag), in particular the position of 9,
is presumably related to bond distances d = 27/q in molecules.
In the solid the mean near-r.elghbor distance is more or less
fixed by the atomic volume which 1s determined largely by the
energy of the free electron gas as a function of volume. 1In
mercury it happens accidentally to fall near do = Ew/qo. In
a molecule the electron gas 1s not confined in the same way,
and (supposing covalent binding) the tond length d is probably
more directly determined by v(g). We expéct d < do’ corre-
sponding to q > d5 and v(q) positive. This denotes heaping up
of charge between the atoms, 1.e.,@h sp bond. If this is a
correct pilcture, then the distortion in the solid to give some
neighbor distances d < dO is not unrelated to covalent bond
lengths in molecules. There 1s some evidence for this. Ideally
we would like to compare with bond lengths in dlatomic molecules

in the metal vapors. These data are not avallable. Values for




18.

the oxlides are given in Table I. The first line gives metal-

oxygen distances23 in the oxide, the mean for Zn0O, ZnS and

NaCl structures being given where the oxide exists in more

than one form. Rox is a metal atom radius in the oxide ob-
tained by subtracting 0.83 from the M-O distances. Since we
are concerned with the trend, it 1s arbitrary what !n;um\hsw‘ we
W. We have chosen it to give Rox=Rm for Mg, where

Rm is the atomic radius in the metal in the sense that
(‘hr/})Rm3 1s the volume per atom. We note that R, for Hg is
abnormally smaller than R as expected from the small 2#/@0,
and it is probably legitimate to interpret the distortion of
the Hg structure as an atfempt to obtéin some nearest neighbor
distances less than those in a regular fcc structure at the
same atomic volume. We emphasize that relating the oxide
spacings to pseudopotentials in this extremely crude way is
only intended to make a qualitative connection between metallic
structure and chemical properties, not as a useful discussion
of the oxides themselves. Nor does our connection between q,
and bond lengths have anything new in content, because dq is
determined by the same factors normally considered for chemical
properties as we have observed in Sec. II, namely lonic radius,

binding of the lowest s-state of the atom and the promotion

energy Asp'
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V. TRIVALENT METALS

The zero of the Al pseudopotential falls close to those
of Cd and Zn, yet Al has the f ¢ ¢ structure, presumably be-
cause the {200} set of reciprocal lattice vectors falls below
2kF for % = 3 (Fig. 4), and its contribution to the cohesive

—

energy of the f ¢ ¢ structure is correspondingly increased.

Since Cd and Zn show considerable distortion from the
ideal h ¢ p structure, and Hg from the f ¢ ¢, we may also
ask why Al 1s undistorted f ¢ ¢. Table II shows the observed
shear elastic constants of Al, together with the contribution
of the Ewald term and the difference, which is the band struc-
ture contribution. The latter 1s large and negative for 044
(rhombohedral distortion), because this corresponds to a
splitting of the {111} set, lying close to Ay in the region of
strong curvature of E(qg). The band structure contribution to
'%(011-012)’ corresponding to tetragonal distortion 1is small and
positive since g(200) lies outside this region. Thus the posi-
tion of 9 is responsible for the fact that the band structure
contribution to the elastic constants has a large anisotropy,
opposite to that of the Ewald term, giving nearly isotropic

total elastic constants.2’24

The fact that Cy, (band structure)
does not outweigh 044 (Ewald), giving a total negative C44 and
a spontaneous rhombohedral distortion as in the case of Hg,

may be regarded as a consequence of the smaller atomic volume




20.

‘and larger valence of Al, both of which increase the relative

size of the Ewald term.

Ga, In, Tl have 9, lying successively to the right of Al.
If q, lies in the region 1.6-1.7 as it does for Ga and indium,
the simple structure with lowest energy is clearly f ¢ c¢. How-
ever, even for f ¢ ¢ both g(111) and g(200) will lie near the
peak of E(q), and the band structure energy will strongly favor
more complicated structures, which have a distribution of
structural weight which better avoids dg° Though the effect is
greater for Ga, we will consider first the simpler case of in-
dium. Thé indium structure is a small tetragonal distortion23
of f ¢ ¢, with c/a = 1.08. The q, lies midway between g(111)
and g(200), making the curvature strong at each, especially
g(111), but the tetragonal rather than rhombohedral distortion
occurs, because of the preference of the Ewald term (see Eqg. 12).
We have calculated %(011-012) for the/gt%d%ture, corresponding
to tetragonal distortion, as g  varies from 1.66 for Al to 1.86

for indium. We take the pseudopotential to be (in Ry);
2 2 2
v(q) = 0.5 (D° - .83%) exp (-D%) (13)

where D = ch/EkF. This roughly fits the Model Potential3 for
indium when ¢{ = 1 and Al for ¢ = 1.12, variation of o{ cor-
responding to stretching the curve along the g-axis. The
result for the band structure contribution to~%(Cll—C12) is

shown 1in Fig. 5. When 9, falls in the region appropriate to Al,
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) is small and positive, but decreases sharﬁly as g,
moves to the right, corresponding to the extreme sensitivity
of the calculated spectrum of Al to the assumed value of Ay
noticed by Vosko et 21.22 The value for & = 1 1i.e., indium,

more than cancels the Ewald contribution.

More complete calculations for indium are shown in
Table III. The first column gives the observed values, and the
others the calculated values using respectively, (1) the cal-
culated pseudopotential of Animalu and HeineE(AH) taking all
higher reciprocal lattice vectors into account, and (1ii) the
pseudopoténtial (Fig. 2) fitted by Cohen and Bergstresseraé(CB)
to the optical spectrum of InSb. The AH potential predicts
too great an instability apparently due to its heving too large
a gradient at g(200). It is interesting to note that the v(q)
fitted empirically for InSb gives much better answers. In any
case it is clear that the qualitative remarks in Sec. I about
the origin of distortions make gquantitative sense. DBut because
of the cancellation between band structure and Ewald terms, the
pseudopotential has to be known very precisely before good

agreement with experiment can be expected.

While indium shows only a slight tetragonal ‘distortion
from f.c.c., the two known forms of Ga are both complicated

27,28 4 T and TTI. The crucial dif-

orthorhombic structures,
ference is not the position of Qs which is almost identical

(Fig. 4), but the slope of v(qg), which, from calculated,3 and




22.

26 is found to be about 1.2

‘empirically fitted pseudopotentials
times greater for Ga. Since v(g) appears sguared in E(qg), the
negative band structure contribution to the elastic constant .
%(011—012) is about 1.4 times larger. Whereas in indium it
scarcely outweighs the resistance to distortion of the Ewald
term, in Ga there will be a much greater tendency to distortion
and the structure will be more radically modified. If Ga had
the same tetragdnal form as 1ndiﬁm, limited by a set of recipro-
cal lattice vectors reaching 2kg as in Hg (Sec. IV), the c/a
ratio would be about 0.85 or 1.3. The Gal structure? may be
obtained from the c/a = 0.85 face centered tetragonal structure
by a rearrangement cohsisting mainly 6f the sliding of consecu-

tive atomic layers perpendicular to the c-axis, giving an ortho-

rhombic structure with
a % b, c/a=2x 0.85 = 1.7. (14)

The GaII structure28 also has a set of reciprocal lattice

vectors at 2kF.

For Tl, consideration of the position 9 in Fig. 4 does
not suggest clear preference for any of the simple structures,
which is in keeping with experiment, since all three are ob-
served,29 h'c'p% being the low temperature, low pressure form.
The h ¢ p stfuéture has near ideal c/a ratio, since E(q) does
not have strong curvature around the reciprocal lattice vectors

(see Sec. III). Comparison of the pseudopotentials of indium
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‘and T1 would lead us to expect f'c ¢ Tl to have slight in-
stability with respect to tetragonal distortion, as does indium.
In fact it is Jjust stable. The elastic constant-%(cll-012),

extrapolated from alloy da’ca,30 is 0.32 dynes/cm°2.
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VI. FURTHER APPLICATIONS

We will include in this section some related comments on

alloys, higher valency elements and 1liquid metals.

We have seen in Sec. V that as 9 shifts from /4.to T1,
quite a large shift (Fig. 4), the elastic constant %(Cll-clg)
changes from -0.1 for the hypothetical f ¢ ¢ structure of in-
dium to +0.3 for £ ¢ ¢ Tl {(both values being extrapolated
estimatesBO’jl). The change is so slight because of opposing
changes from the 21113 and.22OQ} reciprocal lattice vectors.

It is a smooth variation and the distortion of InTl alloys tends
to zero at about 23°/, Tl beyond which the alloys are f c c.
Quite a new phenomenon occurs when Sn or Pb is dissolved in
indium.”® At about 13°/, solute there is a phase change, the
c¢/a ratio switching from greater than unity to less than unity.
The effect must be due to electron per atom concentration e/a,
because Sn and Pb have appreciably differént 94 and the InTl
alloys show that change in 9 has a minor effect. The magni-
tude of the distortion may be characterized by the parameter )

where
1+3% = (c/a)l/3 (15)

and we may expand the total energy in powers of 5' , the 7'2
term giving the (negative) elastic constant. The sign of the

distortion is determined by the third order term, le3 say. We
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‘find that the Ewald term gives a positive contribution to D,
i.e., favors c¢/a < 1, whereas the band structure contribution

to D is negative favoring c/a > 1. The g(200) part of the

latter 1is

4 t 11 1 111

3 E' - 2E SE, (16)
where E!', E'', E''!' are the derivatives of E(q) evaluated at

g(200) for the undistorted f c¢ c¢ structure. In the simple
second order theory (Eq. 5), all derivatives tend to + 00 at

q = 2k because of the singularity of f(qg) there, and g(200) 1is
only 11°/.less than 2k._. Too much stress must not be put on

F
the singularity itself because 1t is only a logarithmic one
and 1s,1in any case, smoothed out by higher order perturbation
corrections. Nevertheless, the general shape of what corre-
sponds to the f function is not too different, increasing to
a large gradient just beyond g(200). It is, therefore, to be
expected that (Eq. 16) is strongly negative, outweighing the
positive Ewald term to give c¢/a > 1 for pure indium. However,
as we 1ncre§se‘e/a by adding Sn or Pb, EkF moves further away
from g(200), and the derivatives of E(q) at g(200) decrease.
The singularity is also further smoothed out by the ele;tron
scattering, although it 1is hot clear how important this factor
is. While (Eg. 16) becomes less stronglj negative with
increasing e/a, the positive Ewald term must be increasing due
to the increase in the mean lonic change. Thus beyond a certain

concentration, the band structure term no longer outweighs the

Ewald term and we have a change to c/a < 1.
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For the tetravalent elements we would expect an increasing
tendency to form distorted structures with decreasing atomic
number, the exact reverse of the situation for divalent metals.

Here d5 lies to the right of the main concentration of struc-

3,

tural welght, 26,33 furthest for Pb, closer to the main recip
rocal lattice vectors in Sn, Ge, Si. However the situation is
complicated by the existence of covalent bondingg’34 which 1is
an effect arisihg from higher order perturbation terms, giving
rise to the diamond structure for Si, Ge and grey Sn. Under
pressure S1 and Ge are found to undergo a transition35 to the
tetragonally distorted metallic structure of white Sn. Thus,
under pressure, which suppresses formation of the open co-
valently bonded structures, these elements indeed conform to
our point of view, since Pb, with d, farthest to the right, is
a f ¢ ¢c metal. At very high pressures, Pb undergoes a transi-

36

tion to an unknown structure. The linear compression of the

f ¢ ¢ phase at that pressure is about 8°/,, and we note that
this increases all reciprocal lattice vectors and 2kF by about
the same amount relative to qo,rwhich remains fixed on an
absolute scale. Thus the decrease 1n volume effectively moves
g, to the left to about”’>’ 2.00 in our units of 2m/Aj, which
is near where q lies® for Sn (qo = 2.01 EF/AO). Thus we expect

the new phase of Pb to be a distorted one.

The group V semi-metals As, Sb, Bl have a structure which
18 obtained from simple cubic by a rhombohedral distortion and

an internal displacement.37 Although in detail the factors
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‘"determining the structure are very complicated,38 it is interest-
ing to note that the g(111) set of reciprocal lattice vectors,
which 1s split by the rhombohedral distortion, is close to dg
for all three elements, and that the distortion is greatest in

As, which has the strongest pseudopotential.3

In liquids the analog of W(g) is the structure function
a(q) measured by X-ray or neutron diffraction, which has its
main peak in the range of q where the simple structures have
thelr first reciprocal lattice vectors (Fig. 4). To a first
approximation a(q) is the same for all metals, but we might
expect some deviations in the sense of the main weight of
a(q) avoiding q,- Indeed for Ga there is a splitting of the
main peak, or rather a shoulder on it,39 in such a way that

a(q) is reduced around 2.9 et which is eppreximately where

(Warbdoled vn ke wsulls of, Referénct 16).
9, liesA The effect 1s particularly marked for Ga because of

the strength of the pseudopotential and low temperature at
which observations are possible. Indium should have a similar
feature in a(qg), but less marked. This has not been clearly

observed to date.40

42

The effect 1s, however, clearly seen in
ngl and Sn'©, againexplicable by a diminution of a(g) in the
vieinity of d5° We note 1ncidenta11¥/ he minimum in the
melting po:!.nt)'}3 of the }' = 3 metals correlates with the
proximity of 95 to the main reciprocal lattice vectors (Fig.q.)

as in the % = 2 metals.
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In Zn and Cd, qO apparently falls nearer the center of
the peak in a(g) than in Hg where it lies just on the high q

e.41’44 Thus Zn and Cd have lower resistivities45 than Hg,

sid
but higher melting points because the effect decreases the

binding of the liquid.




APPENDIX

In a one-electron formulation, the ¢g((g) of (3) is just

ee(g), the screening factor in v(g). It is defined by

v(a) = v;"/€,(a), (a-1)

where vqb is the pseudopotential of a bare ion. In this form

(1) is contained in the results of Harrison,e’4

and Pick and
Sarma,5 but may be derived more directly as follows. Consider
a single g and ignore S(g) which we suppose equal to unity.

The second order contribution to the one-electron energy of the

Sla) 12
T(K) - T(KFE (A-2)

This has to be summed over all occupied states inside the Fermi

state k 1s

surface, which to second order may be taken as the unperturbed

Fermi sphere. We obtain, using (4),

[v(g)? £(g) (a-3)

as the major contribution to U2. However, this counts the

electron-electron electrostatic energy twice and we have to sub-

tract it once.46 It is
1 sc )
_2-P§vg ’ (A')
where vgSc is the screening potential of the electron gas and f%

L
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‘the corresponding component of the electron charge density.

From (A-1) we have

%f°=ﬂm-vgb=w@[1-egm1 (a-5)

,0 comes from the perturbed wave functions

- {31, ) v v(g) o ( -
‘P}E‘ exp\**jt;/ + T(E) - T(k_‘_a exp i\l::'f"é)*:‘:.. (A. 6)
*
L,l/k (//k makes a contribution
AP AP,
2v(g) [T(k) - T(k+g)1™" (8-7)
to F§, and the total ,0§ is
Pe = 2 v(g) f(g). (A-8)

L

Substituting (A-5 and (A-8) into (A-4) and subtracting it from

(A-3) gives
U, = [v(g)]® €,(e) f(g) (8-9)

apart from the Ewald term U_ in (1) which does not depend on the
E

pseudopotential.

The above calculation includes exchange and correlation
only in so far as all vertex corrections are included in the
screening factor €2(q) which 1s the 'proton-electron dielectric
constant!' in the sense of reference 47. It does not include the
change in the exchange and correlation energy of the electron

gas due to the density modulation log' The correct result
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‘including this 1548
ng
b,2 1
—= [v_ "] A - 1], (A-10)
87re2 g %;1 g

where E;l 1s the true 'proton-proton' dielectric constant.47

Comparison with (1), (3) and (A-1) gives

. 2
2 (1-€)E,° (A-11)
O((g) = P
8re {‘E:l
(]:-61) and f have a similar singularity at 2kF so that o is a

smooth function of g. The result (A-10) is just the operational
definition °f'€:1j If we "turn on" the bare pseudopotential
b 49

vg » the change in energy is

z lagb ng /€ 1(8) (a-12)

-~

as in charging up an electrostatic system. The (’gb is propor-

tional to vgb'by Poisson's equation and (A-12) becomes

1 (&2 fure?) [vgble/el(g) : (A-13)

We can now dilvide this up into the direct. interaction of the bare

pseudopotentials

-%- (20 /4re?) [vgb]2 (A-1%)
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‘which 1is included in U_, and the remainder (A-10) which is the

E’
interaction via the screening electrons.
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o
Table I. Atomic radii (in A) in metals and oxides.

Be Mg Zn Cd Hg

M-0 2.10 2.59 2.35 2.52 2.53
Rx 1.27 1.76 1.52 1.69 1.70
R 1.24 1.76 1.53 1.72 1.77
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Table II. Elastic shear constants of aluminum in

1011

Total?
Obs.

Cuy 15

1
5(€31-C10) >4

a

Solids 9, 100 (1959).
b peference 7, p. 149.
[¢]

By difference.

dyne cm

2

Ewald

17.2

1.9

Bandc
Struct.

1547 -0

R. E. Schmunk and C. S. Smith, J. Phys. Chem.
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Table III. Distortion of indium.

Obs. Calc. Calc.
AH CB

1(c;1-01,) -0.12 -1.9 ~o0.2°
c/a 1.08 1.25 -

Note: The first line gives the elastic constant in
units of 10'! dyne cm™2 for the hypothetical
f ¢ ¢ structure and the second line the
equilibrium value of c/a.

a Extrapolated from the data of Reference 31.

b Contributions from g <2kF only.
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FIGURE CAPTIONS

The function £(q) in units of _Q.kF/)-Pn'a.

Model potential of indium (in Ry). Also

indicated are pseudopotential parameters

deduced from the optical spectrum of InSb
(reference 26).

The energy-wave number characteristic E(q) =
veF (schematic).

Zeros q, for divalent and trivalent metals
compared with 2kF’ and the structural weights
W(g) for f c ¢, hec p (ideal c/a) and b c ¢
structures. Units for g and g are EW/AO.

Contribution to‘%(cll-clg) from reciprocal
lattice vectors less than 2kF, as a function
of qg? for the pseudopotential of Eq. (13),
using the atomic volume of indium. Unilts

are 101 dyne em” 2.
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